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EXTENDED ITERATIVE WEIGHTED LEAST SQUARES: ESTIMATION

OF A LINEAR MODEL IN THE PRESENCE Ole COMPLICATIONS*,

A. F. GOODMAN

Senior Technical Staff to Vice President
Information Systems Subdivision

McDonnell Douglas Astronautics Company- Western Division

ABSTRACT

Thi paper introduces an extended iterative weighted least squares
proceduren, etM5r EIWLS$ for solution of a classical problem in analysis
of scientific and technical information: estimation in the presence of compli-
cations, of the coefficients for linearly independent component signals in a
linear model, from observations on the component signals and a composite
signal containing the linear model plus noise which is nonstationary and/or
correlated with unknown covariance matrix.)CAn iterative weighted least
squares procedure, denoted by IWLS, is deve oope-t'or estimation in the
absence of complications. Then IWLS is extended to perform the estimation
subject to: (1) estimators being consistent with a priori information, describ-
ing the random variation of coefficients over all possible states of nature
(e. g., all systems of a specified type from a production process); (2) utiliza-
tion of data from all pertinent channels in the estimation of coefficients which
appear in the linear models for more than one data channel; and (3) replace-
ment of the linear model by a new linear model containing only representa-
tive component signals which are highly-descriptive, but not highly-related,
when there is a large number of component signals in the linear model and
some of them are highly-related. FORTRAN computer programs have been
written to implement IWLS and EIWLS on the IBM 7094 for the case of
nonstationary and uncorrelated noise.

*The paper forms a portion of Chapter 2 in Computer Science and
Statistics: Partners in Progress, a forthcoming volume edited by
A. F. Goodman and N. R. Mann. It represents a current and revised
version of the author's "Estimation of Coefficients in a Linear Model by
Extended Iterative Weighted Least Squares, " Autonetics Publication
X4-1290/32, North American Rockwell Corporation, August 1964. Sec-
tion I has been revised, Section 7 and the References have been expanded
and brought up to date, and Section 8 has been summarized.
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1. INTRODUCTION AND SUMMARY

Since the early 19th century, estimation of a linear model from data
subject to error has been a classical problem in analysis of scientific and
technical information. The least squares procedure for solution of the
problem, formulated by Gauss in 1802 and published by Legendre in 1806, is
essentially the first statistical technique developed for analysis of informa-
tion (Ref 41). However, the effectiveness of least squares and related pro-
cedures mainly depends upon characteristics of the error.

This paper introduces an extended iterative weighted least squares
procedu--, denoted by EIWLS, for solution of the classical problem in the
presenct of complications. A complete description of the problem, which
may be termed a generalized statistical regression problem, is: estimation
in the presence of complications, of the coefficients for linearly independent
component signals in a linear model, from observations on the component
signals and a composite signal containing the linear model plus noise with
unknown characteristics. Component signals are sometimes called input or
independent variables, the composite signal is sometimes called an output
or dependent variable, and the noise is sometimes called a residual or
random error. Since EIWLS was developed originally for error analysis of
an inertial navigation system, the signal-and-noise terminology is employed.

Piertinent characteristics of the noise are contained in the square
array of noise variances and covariances, called the noise covariance
matrix. Noise is spoid to be stationary and uncorrelated when that matrix is
a constant multiple of the identity matrix, nc.nstationary and uncorrelated
when it is a diagonal matrix, stationary and correlated when each row of it
is a proper arrangement of elements in the first row, and nonstationary and
correlated otherwise.

Consider estimation in the absence of complications. If the noise
covariance matrix is known, then the optimum estimators of tVe coefficients
are the weighted least squares estimators determined by its inverse. If the
noise covariance matrix is not known, its estimation appears to be a reason-
able step toward estimation of the coefficients.

Estimation of the linear model is, itself, required to estimate the
noise covariance matrix. Goodman (Ref 1) presented an iterative weighted
least squares procedure, denoted by IWLS, to accomplish the estimation
when the noise is nonstationary and/or correlated (i. e., not stationary and
uncorrelated--in whici case, the least squares estimators are optimum)
with unknown covariance matrix. Briefly, IWLS:

1. Obtains the least squares estimators of the coefficients.

Z. Calculates an estimator of the noise covariance matrix by using
the composite signal and its least squares estimator, based upon
the least squares estimators of the coefficients, to estimate the
necessary noise variances and covariances.

3. Obtains the weighted least squares estimators of the coefficients
which are determined by the inverse of this matrix estimator.



4. Iteratively repeats 2 and 3, with the least squares estimators of
"the coefficients replaced by the latest set of weighted least squares
estimators of the coefficients, and obtains a new estimator of the
noise covariance matrix and a new set of weighted least squares
estimators of the coefficients.

5. Continues the iteration in 4 until a preassigned level of stability
is attained.

The complications and their treatment were also summarized in general
terms by Goodman (Ref 1). This paper is an extension of Ref 1 and intro-
duces an improved and extended IWLS. Improvement of IWLS, as presented
in Ref 1, involves improved estimation of the noise covariance matrix. In
the following paragraphs, each complicatior, and the corre ,ponding extension
of IWLS to EIWLS is briefly discussed.

Coefficients in the linear model are constant for a particular state of
nature (e. g., a particular system of a specified type from a production
process). However, they may vary randomly from one state of nature to
another. A priori information describing the coefficients' random variation,
over all possible states of nature (e. g., all systems of that specified type
from the production process), may exist from previous analysis; and the
estimators ought to be consistent with it. To insure thAs, a modification of
IWLS permits the incorporation into the procedure of a priori information
concerning the means and covariance matrix of the coefficients.

Data may exist from several data channels, and a coefficient may
appear in the linear models for more than one data channel. The data from
all pertinent channels should be utilized in the estimation of that coefficient.
This may be accomplished by properly arranging the coefficients and data
from all channels into a form suitable for the application of IWLS.

There may be a large number of component signals in the linear model
and some of them, though linearly independent, may be highly-related.
Component signals are called highly-related in this paper when they possess
a high degree of linear dependence. For u.ccuracy and ease of computation,
it is frequently desirable to replace the linear model by a new linear model
containing only representative component signals which are highly-descriptive,
but not highly-related, and to estimate the coefficients of the representative
component signals in the new linear model. To accomplish this, the set of
component signals is partitioned into subsets of highly-related ones and the
appropriate weighted average of a subset is selected to be the representative
component signal for that subset in the new linear model. The coefficients
in the new linear model may then be estimated by IWLS. In addition, an
estimator for the coefficient of the representative component signal for a
subset is apportioned among the coefficients of component signals in the
subset, via the weighting scherme used in the selection of that representative
component signal.
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Additional operations, such as pre-editing of data and inclusion of
estimates based upon previous sets of data into the a priori information, may
be added without too much difficulty.

Although EIWLS is applicable when the noise is nonstationary and/or
correlated, it has been programmed for the computer only in the case of
nonstationary and uncorrelated noise. Two FORTRAN computer programs,
the basic one (Ref 2) and another (Ref 3) using Efroymson's technique (Ref 4)
to preselect the representative component signals, have been written to
implement IWLS as presented in Ref 1; and a FORTRAN computer program
(Ref 5) has been written to implement EIWLS.

Iterative statistical procedures such as EIWLS extract considerably
more information from the data than do noniterative, closed-form procedures
such as least squares. In view of recent computer hardware and software
development, iterative procedures have been feasible to implement and
evaluate for some time and continue to become more so with the passage of
time. It is therefore "penny-wise and pound-foolish" not to utilize EIWLS,
when dictated by theory, statistical tests such as the one given in Ref 42, or
examination of the data. Indeed, EIWLS is even more appropriate today than
at the time of its development.

Since iterative statistical procedures bridge the gap between the two
extremes of ncilterative, closed-form and optimurm statistical procedures,
it is somewhat surprising that the development of a meaningful theory for
iterative statistics has been essentially neglected in favor of the continued--
and almost academic- -characterization and comparison of the two extremes.
This is well illustrated by the survey of related literature in Section 7. It
is noteworthy that the quite-recent Ref 42 contains an iterative procedure
which is closely-related to IWLS, as well as an approach to the construction
of confidence intervals and statistical tests, when the noise is nonstationary
and uncorrelated.

Ref 41 recommends the consideration of four questions regarding an
iterative statistical procedure:

1. Under what conditions does the iterative procedure converge?

2. How rapidly does the iterative procedure converge?

3. Under what conditions does the iterative procedure converge to
the proper solution?

4. To what extent does the iterative procedure improve upon a
noniterative, closed-form procedure?

Partial answers to all four questions are provided by Sections 2-8.

Those interested in only the essence of EIWLS may confine themselves
to Section 1. Sections 6, 7 and 8 augment Section I with a discussion, a
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comprehensive survey of related literature, and an illustrative example. In
Sections 2 through 5, the statistical details of EIWLS (whose comprehension
may require careful reading by the nonstatistician) are displayed, with a
minimum of development and amplification, along with some reasonable
alternatives which are listed in footnotes.
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2. ITERATIVE WEIGHTED LEAST SQUARES

Suppose that t represents time or some other auxiliary variable.
At time t: X 1 (t), X 2 (t), ... , XP(t) denote linearly independent com-
ponent signals; 01, •82 •••, 1, denote unknown coefficients; Y(t)
denotes a composite signal; anTe(t) denotes noise with mean zero,
variance 0 2 (t) and covariance o(t, t') between 6(t) and c(t'). Then the

linear model* is PjXj(t) and the representation of Y(t) as containing

the linear model plus noise is

Y(t) = • jXj M) + •(tM• (I)

Given the explicit observations Xji of Xj(t) for j=1, 2, . p and

Yi of Y(t), which imply the implicit observation ji = Yi - Jt_ jXji

of I(t), at time ti for i = 1, 2, . . ., n >p, the generalized statistical
regression problem without the complicating restrictions is the esti-
mation ofrl, P2, ... Opwhen el,*1*,.., in have mean zero and

unknown n-by-n covariance matrix % of variances oa. a a = (ti) a~nd
covariances Ohi = 0(th, ti).

Complicated expressions in this and subsequent paragraphs may

be written in compact form by the introduction of matrix notation. Let

x j:
XjZ

X. forj = 1,2,•..,pt
--J

X.L J

*A constant term may be included in the linear model by setting
X 1 (t) identically equal to one.
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and the matrix alter ezo of the generalized statistical regression
problem without the complicating restrictions is the estimation of
Sgiven X and Y, wl en I is unknown.

The weighted least squares estimators of l, , . p
which are determined by the n-by-n matrix

w 1 1 In

w12 w 22' w2n
W-

Win WZn Wnn

of weights whi (or any matrix that is a constant multiple of W1 are
thse minimnizing the quadratic form

n n P p

hi h j ji i j

(Y- XA)' W(Y - XV).

It may be shown that these estimators are given by

A A A A 1

w (Ow' fw ..... OWp (XW X) XWW Y
-1 1

arid have covariance matrix (X' W X) X' W IW X (X'W X)-. They
are called the least sqvares eatimators if W is the n-by-n ident.t,
matrix In.

In the sense of possessing minimum variance among All unbiased
P

linear estimators, of provid.ng an estimator of Y •. X.. NX hich has

mirimunm variance among all unbiased linear estinmators of it and of
bein:g maximun- likelihood estimators when the noise is normally
distributed, the optimum estima'ors of , 2 ..... p are the
weighted least squares estimators which are determined by -I

(Ref 6, Chapter 14 and Ref 7, Sections 1. 3-1. 5). The least squares

estimators are, therefore, optirmu'mr only if the nuise is etationary
and uncorrelated, and I is a constant multiple of the identity natrix.
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For nonstationary and/or correlated noise, it is not unreasonable to
presume that estimation of I and then estimation of l 1, 8 •.z
by weighted least squares is superior to estimation of , a2,•

p
by least squares. Estimation of 1 o X.o for i = 1, 2, n is,

j=l -

however, required to estimate T. This may be accomplished via
estimation of 1 , P , ... , p Hence, iterative estimation of

~l' ~z *..~ and then I, as accomplished by IWLS, should pro-
vide improvement over least squares estimation of 0l, 02, ... , Op.

Stated in symbols, IWLS:

1. Obtains the least squares estimators l(o), .... ()

from

A(o) = (0) A (0) A (0)), X'((o1 B~o) , p ( x')l (3)

2. Calculates an estimator Q (1) by using Y1 and its least

squares estimator

1 3 3j=

for i = 1, 2, . .. , n in an appropriate estimation scheme to

calculate the necessary A(2 and bii())

A
3. tbtains the weiehted least squares estimators p,(l),

p2(1), pl) which are determined by ( IjI ')yI from

^( ) A (1, A

x (l))l x x' (5)

4. Itera~ively repeats 2 and 3, with Pi(0), 2 (), ... , P(pO)
and 0fo i = 1, 2., n replayed bythe latest Ce
weighted least squares estimators A1 (c 2 ca),., nd

A'( A(c)Y.' , x.. (6)
i lj8

8



for i 1, 2, n, and obtains a new estimatoj i(c+l) and
new set of we ghted least squares estimators h (c+l),
2 2 (c+1), ... , (c+l) from

_(c+l) A (C+1) (Cij A (C+1)).
1 '2 p

X1~(~l~ xj -1 ~t (+)~1y (7)

5. Continues the iteration in 4 for c = 1, 2, c*-I, where
c*]ither is determined when a valid measure of the change
in .(c), A2 (c), ... , Pp(c) becomes less than a preassigned

constant or ij, itself, a prea signed constant. 4tn estimator
for the covariance mat-ix of ý CC), p(c) .... , Ap(c) is given

AA A •()_ [X (AC)

by XI( (c)) 1xJ 1 X,(X(c)) 1 j(c+1)(jcl YIX IjC)-'

which simplifies to IX'( (c)- X! when 1(c+l) = S(c), for
(0) -- inand c = O, 1, ... , c*.

The selection of an appropriate estimation scheme to use in 2
is influenced not only by the type of noise and the data, but also by
statistical considerations.

When the noise is nonstationary and uncorrelated,

2, 2 2.
diag (a o2 .... , an

1,2' n

An estimator of Vi 2 is provided by

S(c) 2 ' (c -1))2i = (Y - Y(c f-i c = 1, 2, c*andi = 1,?2,.... n. (8)
1 1 )1e

These estimators are somewhat unsatisfactory because each of them
is based upon only one observation; and they should be combined to
produce more satisfactory estimators. In moat applications, it is
reasonable to assume a linear model for the variation of V2 (t). Let
Tl(t), T2 (t), ... Tp(t) be known functions of t and V1 , v2 , .... vp be
unknown coefficients with p + P < n; and assume

P
a 2(t) - : k kT k(t)"

k~l

9



P
A simple version of VkTk(t) which is employed by the computer

k=1 P
program (Ref 5), is the polynomial 2 vk tk-l Suppoee that

k:l
Tki = Tk(ti) for i = 1, Z, .. , n and k = 1, 2 .. , P,

Tkl

TkZ

T for k 1, 2,

T 
!n

T = 1, " ... TP),

V1

V2

and

VP

ia (c)2

A (c)2)za for c = 1, 2, , c*.

A (c)2
n

10



Then an appropriate estimation scheme* to use in 2 is
A,11) A, ( ) A (1) Ap(1), _ 192

V (V I, V2  , , ) = (T'T) (•9

A(C) A (C) A (C) A (0),.. (c-, (C-c) 2 A(C)

J T' (,(c-1)) 1h- T 1 - -)- 2 1c)2 (10)

for c = 2, 3, ... c* and

A()P PAk kl.... Nm,'*
=Ik=lXI M

for c 1, 2, , c*. It might be observed that the use of Equa-
tions (9)-(11) produces a simple iterative procedure for obtaining a

*This estimation scheme is preferable to

I M A1c1 2

M+i for i=1,2,. .. , M au', c 1,2,... c*
h- 1+1

M (C)
.(c h M ah) for i=M+I,M+2, ... n-Mandc=l,Z,.. . ,c*

n-I 
(~nOh for i =n- i+ 1,' n-M ÷' .. ., n and c=l '2,.. ., *

~n+M-.i+1 h 4 Mh

which is the suitably truncated running average of 2M+I estimators

bh(C)Z that was suggested by Ref 1, when it is reasonable to assume

a linear model for the variation of a 2 (t); and the estimation scheme

suggested by Ref 1 is preferable, when such an assumption is not

reasonable.

11



solution to the maximum likelihood equations*, whose accuracy may
be checked, for nonstationary, uncorrelated noise which is normally

distributed with a (t) = .VkTk(t). To establish an upper limit for
k=l

all weights, all estimators Tki must be bounded away
k=l

from z.ro by a lower limit.

Consider the case of stationary, correlated noise, and let the

observations be taken at different and equally-spaced times with

ti = to + i At. Then O(t, t') = •(A) is a function of only the separation
time A i t-t'[, Ohi = o(r) is a. function of only r I h-i I and

o(O) a(l) o(2).., c(n- 1)

a(l) 0(0) o(1).., o(n-2)

I o(Z) o(l) (0)... o(n-3)

oý(n- 1) o(n- 2) o(n-3) ... O(0

An estimator** of -(f) is

(c) 1 n-r A (C-l) Ail + (c-Il)a (r)= l~ (y. - y.C~ (12)
i=n- r 1 i i ) i+(

for c = 1, 2, .... c* and f 0, 1, .... n-I

*The investigation which wielded Equations (9)-(1l) was partially
prompted by the conjecture of Dr. T. L. Gunckel that IWLS, as
presented in Ref 1, might providL .n iterative solution to the

maximurn likelihood equations.

*:iAn alternative estimator, which takes the estimation of

1I, 02, .... , 3p explicitly into account, divides the sum by n-p- r

and limits r to r = 0, 1 ... , n-p-i.
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it is usaally reasonable t:o assume a linear model for the variation of
o(A)*. Suppose that rLlA), Tz(A), ... , Tp(A) are known functions
of A, VI, vz, .... vp are uncown coefficients with p + P < n and

o(A) V T•: (kkA)LP

k k

whose ,simple version is

P

2(A V Ik A k
k=l

If Tki Tk((i-1) At) for i .1, 2, ... , n and k 1, 2, ... , P,

-k l

TI

Tk2

T for k =1, 2, P.,

T (Tip T ... , T
- ; -2'---

"V2
V z

VP

*Either of these estimators may be used, as is, when it is not reasonable to
assume a linear model ior the variation of (A).

13



4(cnan

((c)4

No cia (n n- 1 .. ),c•

then angh aproratei e stuedimqation schem touecau2se givcnsiue by

(nSC)(r wit n-C. At (C) (C)sar Ao (C)r ha stm r

a (Cn ond

A(c)

V (n-i):VkT 2Vk kTk

Ac A(c) A (C) A (c),
1 k T 2 2:V Tkl 2 VV k (TN lT N& ) (13)Tk~-

Y~) k~l k 71 kzl k=l

P P P P

k~l k:1 k-i k1 kn-

kP n vk T k~ IXV k T kZn... 2:VkTk

(14)
for c =1, 2, ... , c*.

The weight, matrix N is used in Equation (13) because it constitutes a
simple means of reflecting the increase of statistical dependability
in lc)(r) with n- r. It is necessary to require that all estimators

A (c) (c)
1 V kT ki Iof a(r) be bounded above by the estimator

14



"" • T(c)k of ac)(0 ). A •'mmoia engineering model for the
i ~k=!

variation of #(A) is

-vAV(A) -one

which is nonlinear in the unknown coefficients G0 and v. This
exponential variation of a(A) may be treated* by transforming the
model to the linear one,

log eo(A)=logeO - VA =V - VA

and proceeding as alove with 0(c)(r), Tli, Tzi, vl, and V2 being
replaced by loge a c (r), 1, (i-1) At. vo and - v, respectively.

A proper modifi-ation of Equations (12) - (14) would eliminate
the restriction of observations to different and equally-spaced times.
In addition, an appropriate combination of the techniques used for
nonstationary, uncorrelated noise and for stationary, correlated
noise may be employed in the event of nonstationary, correlated
noise. The calculations would then become more complicated and,
perhaps in some cases, prohibitive.

Inversion of 1 (c) in 3 must now be accomplished. If the noise is
Z P A -C _I

nonstationary and uncorrelated and 0 (t) 2: VkTk(t), (!(c)) may
be written in closed form as k=l

c di-ag p1- , 1

kl k1 k~l

for c = 1, 2,...,c*. (15)

*If preferred, c0 e may be approximated by k
k--I

V9, V2, ... I Vp may be edtimated as in Equation (13); or vo and v may
be estimated by those (nonlinear) estimators that minimize
n -- (i-1)AtI ,

(n-i+l) [(c)(i-l) - e 0 C but are difficult to compute.

15
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* The performance of this inversion has not yet been investigated for
A correlated noise.

A valid, yet simple, reasure* of the change in p 1 (c), A2 (c)
( (c) (c-i)

(C)~ fo S5i. max ________

j=l,2,. .. P A (C)

.i (Cc) (

.(c) - ,.(c-i)1

*Depending upon the application, max A I

1~,2, ..... n Y.

A (c-i) n - •i
A(C 4 -c) T- may be a more desirable
Aj i=1 Y .

measure of this change.

16



3. INCORPORATION OF A PRIORI INFORMATION

Let P1, P2 ..... Pp vary randomly over all possible states of nature
with means p *, P2-*, . ... , 3p* and covariance matrix r of variances
Yj 2  Yjj anu covariances Yjk' Introducing matrix notation yields

P

and

Vml I YI1 . Ylp

r Yl 12 Y22 . .. y2p

YI p y'p Ypp

L

The a priori information, which exists from previous analysis. is knowledge
of _* and n.

Two quite reasonable methods to ensure that estimators of Pl, P2 '
. , �p will be consistent with the a priori information are: incorporation

of * avd F into the quadratic form to be minimized by the estimators; and
emp•ioyment of a linear combination A & (c*) + (I. -A) 8* (a special case of
which is XAjc*) + (I - X) p*, with A- AI p and?< X <) as the vector of
estimators, where A is a matrix which measures one's relative confidence
in the data (as represented by p(c*)) and the a priori information (as
represented by pf). Suppose

Q (y x), (c. - XP) + (_P - -* 1 •_

17



is the quadratic form that incorporates /I* and I and is to be mini-
mized*. Then it may be observed that the corresponding estimators

2 ... p which incorporate and F are given by

A A A A

1*) 0 .. 4)'

[Ix(iVc*))'x + r- 1 J -1 1 x(l (c) -1Ž + r'1-

fX( I (c) x + r- 1J1 [X( jc I- x + r

A _ + (Ip _ ,

":if 0 < Iz 1, then two other quadratic forms that incorporate ft: and F

and might be minimized are:

© MY - X_•l (O(c:)1- (Y - XP

A A (c'~
X (1 - - X)):, _ X . ) (X0- xo *),

with the corresponding estimators A 0, A20 * 4pQthat .ncorpor-
ate 07,, and F being yielded by

AS (AQ, 0, 4 0)-; a(n)
p

X ('3 XO) _(I A )(0 ~

A ~1

with the co irresponding estir-nators jq 2 P , Ahat in( orporate
and r being yielded by

A

Orne such A I '

A 
A

ior HIAD being a norm of (C g V



where A is the p-by-p matrix of elements lik defined as

A [ x- (jVc*ý)) x + r-j -1 [x (V,' X1. (17)

Note that A(c*) and i(C*) may be replaced by k(O) and In, if it is desired
to incorporate the a priori information into least squares rather than
IWLS.

It migh, easily be shown that Aj*, 4Z* ... 0 Ap* would be the
mri.ximum likelihoc-d estimators if I and t(c*) were equal for both the
noise and the coefficients being normally distributed,

4. PROPER ARRANGEMENT OF COEFFICIENTS AND DATA

To denote the kth data channel, for k = 1, ? . ., q, prefix a k to
the subscripts of the previously-introduced notation and obtain, in particu-
lar: Xkl(t), XkZ(t), ... , Xk k(t), 6k1l' kZ' .kpk, Yk(t) and Ek(t);
Xkji = Xkj(tklcji) for j 1, Z, .. . -ki Yk(tki) and tki tk(tki) = Yki

Pk
yI s6 kj Xkji for i =1,Z2, .. ~nk; and

j=l

Xkj I

• Xkj2

Xkj = for 1. , Pk'

x kjnk
X = (X,.

xk (X-ki -k, ., Xp),
kpk

19
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'k2 %k2 .k~nI•kk ="'

Ok2r *knnk

The analogues of Equations (1) and (2) for the kth channel are now

Pk

Yk(t) = il 11i XIQ(t) + ck(t) and (18)

j= 1
Pk

k gkj -kj +k Xk k+kfork (q. 19)

Let

X, 0 0 . 0

0 X 0 0

X 0 0 X 3 .. 0

0 0 0 X
q

21



FYI-
Sf

- q

Y-r

and

I
iqj

which has the effect of stacking the data and coefficients associated with
channels 2, 3, q under the data and coefficients associated with
channel 1. If ahkij is the covariance between (hi and •kj and thf,

nh-by-nk matrix Ihk is
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hkl I hhk 2 hkln

a hk2 1 4hkZZ 
4hkZnk

! •_€Thnh 1 a•MhZ hknhnkj

a 1k "hkn h2 hyhnk

$hen .he :ovariac matrix of f 11', Z "'' in 1 ' 21, 12, Zn.
fql, fq2 " e 1qnq is

11 1Z ... Iq]

1222 ... 2

Iq Zq ... qq

Suppose that JklI,' Ok2 jZ, . k are the same (i. e. , the

same coefficient appears in the linear models for channels k1, k2 ,
kr). All but one of them, for example #klji, are superfluous and
should be elininated from consideration; and the pertinent columns of
Xkl, Xk 2 , ... , Xkr and .Yk, Yk 2 -. ,kr (i.e., the pertinent data

from channels k;, k2 . , kr.) should be utilized in tne estimation of
Okll This may be accomplished in a simple (though not simple-
appearing) manner, by. deleting BkJ2j, 6k3j 3 ' . .krJr from fl;

k -1

replacing column number 2 Pk + J I in X by the sum of column

k1-I k2-I k -11 2 r

numberm 2 P'+J 1  2 Fk+ 2' j . 2 Pk +jrin X (which has

kL= I k=1 k= 1
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the effect of alinder the j th column of i the F ohmctiumn of X3
aiundng the jjth columrn of X1,, i the fothmaoion of X 3

the jrth column o k

the p+j th column of X); and deleting column numnbers
k -

+' ~2: Pw k +j 3' ' P k + jr from X. If more convenient,
k= Ik=

Cne Of R2kj, lil0Jkj other than Akjmay b~e Lxsed as the

focal point for the alinement.

After all duplications among the Ak shave been treated as indi-
cated, the coefficients and data from all channels are properly arranged;
and a properly arranged analogue of Equation (Z) is given, in the same
form as before, by

Y X (Z0)

A proper arrangement of thi, data from all channels has to be con-

sidered in determining the forrm of I and in estimating its necessary

variaixAýes and covariances for IWLS. In particular, the requirement of

nonstationary, uncorrelated noise for this proper arrangement means
that not only tki and (kj (i. e .,observations of tne noise at any two
times within any channel) must he .inicorrelated, but also that (h and

Ekj (j. c. , observations of the noise at ayt.otmsi n w hnes

must be uncorrelated.

q

On:ý may v-,cw the p 4.1 Prsligclnn fXa etr
k::- I~rsligc1ir fXa etr

X- o f n nk observations Xi on the p component signals X.{t), the

p elements olf , as the p coefficieni- J3 j of X-t), the n elements of Y as

"n observ,,ations Yi on the composite signial YWt'), the ri elements of ( as

"n observations ifion the nois tc(t), ~he nz elements of 1 as the n vari-

anc es a2ot f1 i and n -ncovariazi es ah of t and ei and Equation (20)
as the matrix alter- ego of Equation (1',

Dr, J. C. Pin son proposed the alinement as a simple way to utilize

the pert inrent ':olkirris of X1, 1, Xk V*' Xk T
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5. PARTITIONING, SELECTING AND APPORTIONING

For exposition purposes, it is desirable: to change the number of
linearly independent component signals and corresponding unknown
coefficients in the linear model to m; to redesignate them by ZI(t), Z 2 (t),

.... IZm(t) and al, a 2 , .... , am; and to transform Zk(t), via multipli-
cation by a posiLive scale factor, so that the units of Zk(t) will become the
units of Y(t) and a will btcome unit-less for k = 1, 2, . . . , m. This
transformation will be compensated for in the technique described.

Let Zki z Zk(ti) for i = 1, 2, .... n andk = 1, 2, ... , M; aI,
a2, ... P am vary randomly over the ensemble of all possible states of
nature with means al*, a?*, m* arid covariance matrix F * of
variances y. ykks and covariances yh*; and

Zkl

z ?
Zk fork~l, 2.... , m,

Zkn

Z (7 ( 1, Z17... Z

a1

a,

a

a m

The suggestion to iriestigate the feasibility 0 f, ,,, devise an analysis

for, such a technique wab made by Mr. H. J. Goldfisher and
Mr. L. H. Pinson.
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a *

and

Y*1 *Y1 ... Yim*

rY12 Y22" .. y2ri

Fy =

Yl, m Y2m M'mm r

Then the linear model, ,. "natrix alter ego and the corresponding

a priori information become a Zk(t), I a Z Z a andr a * and F r,
Y. I k k-I

When in is large and/or ýome of Z 1 (t), ZZ(t). ,Znx(t) are highly-
rel te(* considc ration of accuracy and ease of computation frequently

m

dictates that 2 akZk(t) be replaced by a new linear model containing

k-l
only representative corriponent signals which are highly-descriptive, but
not highly-related. Suppose that the p< mu representative component
signals, whose urLIts are the units of Y(t), and corresponding Linit-less

unknown coefficients are Xl(t), X (t) ..... X (t) and P,, 82 . 8
X ( jtir )for i 1, 2----- n andj 1, 2, ... P; 01 , R

vary randomly over the ensemble of all possible states of nature witp,
means Z :, ,p and ,ovariance matrix F of variances)

Y j yj and covariances Yhj; and
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xj2

X.~ =.for j :=-

L 
jn

(xI

-• 1' 2

and . .



FYI I Yl ? . Yl p
F= 12 Y22 YZp

I!
1l1" Y2 p Y pp

Hence the new liiiear model, its matrix alter ego and the corresponding

a priori information are =X(t), _ _Xj X_3 and 0* and f,

m P

One manner of replacingkI akZk(t) byj .Xj(t), and in particular

Za by X1, is to partition Zl(t. Z2 (t), .. . Zm(t) im subsets SI,
S, ..... Sp of highly-related Zk(t);s and to select an Xj(t) to represent
S. (i.e., each Zk(t) in Sj) for j z 1, 2 ..... p. In addition, it is desir-
able to be able to apportion an estimator of each Rj among the ak's
which correspond to the Zk(t)'s in S .

A measure of the degree of linear dependence oetween Zh(t) and
Zk(t) is needed to accomplish thib partitioning. One such rne•8ure,
based upon Zh and _k, is the cosine

nZh Zk -h -d= d i -1h -k
chk dkh F/n )(n z f

of the angle DhkI Dkh between _Z, and "Zk. f

I-i

Zk Zk
an1

andc
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Fzk
22 I k for k 1, 2, M, (23)

[ij

then the sample c.orrelation coefficicnt

(-Z hi zh)( ki k

r r nhk kh I2f nZ 1h{~ 1k 12k j

J24)

7i, -z )Z 7-

-4 -h h-jn ( k -k -k '

betw 'IZ anid Zk is tht- cosine outtux angle betveen - and
Z- L' and also a nleasnii otI thte degree of lintear deperndellt eh('en

7, 1 (t) and Z~ii, ) 1-)bOh (.erve t;1at :e nlh'Ilt"pll at'.rlon f Zj'.t). by' cj and

by, I i's rl22dng Ith iiae. ii it,ýidec otf d hk ari1d h t an1"d ciag the

Si1gn of dh~k alnd r hIk arl orc- ind k-k having different s;1gris. ý
*-ally three-0 oI the d.ik' s arid any thr-ee cof the rhk-s satisf.B:

the ineqiialt ie s

<1<

andi

- r K 1-r ra (k



Consequently, it is feasible to utilize either dhk or rhk in a partitioning

procedure for obtaining SI, S 2 ... , Sp from Z 1 (t), Z 2 (t), ... Zm(t).
The pertinent one to ýise is dhk when a constant term is not •ncludcd in
the linear model and rhk when a constant term is included in the linear

model. Without ioss of generality, dhk will be used in the text; but: it
should be replaced by rhk where appropriate.

A reasonable partitioning procedure should not be affected by a

renumberi,,g of ZL(t), 7 2 (t), ... , Zm(t). The procedure also ought to

yield SI, S2 . ... , Sp with a relatively high degree of linear dependence

exiating between :ny two Zk(t)'s in the same S. and a relatively low

degree of linear dependence existing between any two Z3( js in differer't
Sj's Finally, it should provide some control over the size of p,

The partitioning procedure employed by EIWLS:

1. Computes

k-i rn m

K Il + h 1 hi z l jh 1

for k -- I, 2, .. , m .

2. Selects that Z (t), say Z k t) , whosc dis spn-ailest
k k! k

3. Puts Zk(t' into SI if and only if 1 dkkll 2> d, where cos 450

1 . 70711 < d < I is a preassigned constant v. huch Thould be

selected to reflec-t the desire for the existence of a relatively

high degree of linear dependence between ay two 4k(t s in

the sarie Si and a relatively low degree of Lnear dependence

between arny wo Zk(t)'s in d~ffer'ent Sj s and the desire for a
relatively sniall p.

4 Sclect s that Zk(t ) not in S ay, ia, Zk (t), vOiose d, s smallest

among the Zk(t)'s not n S1

5. For ZO(t) rt in Si, p,'t s it into S ,i a0 ci only dik ] > f

and for Zk(t) in Si re-,nuvec from S, ,ý-d puts tt :nt,'- S

and only if dk.k2  1 >

Mr. P L His i. developed tie detalfi of thi.i pro'cedure-



6. Continues in the same manner and selects that Zk(t) not in
S S, ..., SJ.2 or S-., say Zkj(t), whose dki smalle.

among the Zk(t)'s not in S, S, ... , Sj2 or Sjl

7. For Zk(t)not in SI, S ... , Sj. 2 or S- 1, puts it intoSJ if
and only if IdkkI a d; and for Zk(t) in S1 , SZ, ... , Sj.2 or
SJ.I. removes iH rom S1, S2 , ... , Sj.? or Sj.. and puts it
into Sj if and only if I dkkhj 1> max d jkh=1,2,...,j-I dk

8. Continues in the same manner until selecting a Zk(t) not in
SI. S2. ... , Sp.zor Sp..l, say Zkp(t),for which fdkkp -d

for all the Zk(t)'s not in Sit S2 , ... $ Sp.2 or Sp.1 and,
thereby, defining p.

9. For Zk(t) not in Slt S2# ... I, Sp or Sp,., puts it into S
and for Zk(t) in Sl, S2, ... , Sp,2 or Sp-l1 remover it from
sit S ... S or Pp.-I and puts it into Sp if and only if

dkkpI > max IdkkjIj=l,Z,... ,p-1

10. Inspects the resulting SI9 SZ, ... , SP to determine if I dhk
is sufficiently large for all Zh(t) and Zk(t) in the same S-, if
I dhk I is sufficiently small for all Zh(t) and Zk(t) in dif&erent
S. 's and if p is sufficiently small

11. Modifies SI, $20 .. , S and d until 10 is satisfied to a
reasonable extent.

It is notationally convenient to define 0 = m 0 < ml < m 2 <
<mp-1 < mp m and renumber Zl(t), Z 2 (t), ... 0 Zm(t) with Zm. l+l(t),
Zm.P+2(t),-..., Zmj(t) being in S, for j = 1, 20, ... , p. Using
Eqtation (25), it might also be demonstrated that each Zk(t) in Sj may
be transformed, via multiplication by dmjk/ I dmjk I° so that dhk becomes
positive when Zh(t) and Zk(t) are in S. for j = 1, 2, ... , p. This trans-
formation will also be compensated for in the ensuing discussion.

m P
The replacement of kX akZk(t) by jXA(t) means that X (09

X(t), . X (t) should be selected to satisfy

2 p

~X. (t) a z(8
S•X()= £. kZk(t). (28)

j=l k=l
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In additi-a, the representation of S_. by X.(t) suggests that Xj(t) should
be selected to satisfy

m .
X..(t) , a k Zk(t) and (29)

j-1

X(t) v5 vZfWt0
k k

where vmj_ +l, vmj_l+2, .... vj are non-negative weights whose

sum is one, for j = 1, 2, ... , p. Simple anal/rtic consequences of the

validity of Equztins (29) and (30) for all values of t are

ak = V k for k = m. 1 +1, m +2 .... m. and (31)

ak for j = 2, .... p. (3Z)
k-m + k

Regardless of Lhe true relationships (or lack of them) among
amj. +1, am. +Z .... am., the selecting of Xj(t) tc -present Sj

(i. e., Equations (29) and (30)) induces analytic relationkiips among
amj. 1+1, armj±+2. ... , am. and ' '.,e'. , Equations (31) and (32))

which cause them to become anaiytically and probabilistically
indistinguishable (i. e. , yield all -f them once any one of them is
determined) for j = 1, 2, .., p. The selecting, in turn, induces a

web of analvtic relationships, which are not difficult to derive, into
the structure of the a priori information:

a V0 * fox, k m. +1, r. +2, .... in; (33)
k kj j-.l j-l 3

- ak; (34)
kzM. +1
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2k*= k*=Vk y.for k m +1 rn I+2, ,r; (5

Yh v. vVY. Y Ik for k = h+l, h+2 ...... m. zndh k , : k i h ,

JJ

hk T n. + I rn.-I; and (36)

j-1
km +, m +A

S-! ...... m. and j 1, 2 .. p.(3.

as the natural set** of weights to use in Equasions 30) and (31). it
follows immediately tfat

Yk* I

J

and so ak and fjoccur with equal probability when ak, hence jisnormally distributed for k n, mjl, mj..l+Z .... mj and j , i,

2, ,. . p.

as These weights were proposed by i . C. M. Shipplett.

'. 4 An alternative set, which assigns equal weight to Zrn, 1 +l+,
Zrn~lz ... mjin Eqato (30) and t~m_+,am +, ..

follo-wtom 1 +l ininnj4+2 +ha

a 1

k1 k

Skk * ,33

and so quando j 31 occu withequa prbb ilt when k henc 8j,i

mi-j- in Equatio (30) and to -- j 1 1 2j ..... ....
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Hence, the selecting of Xl(t), Xa(t), ... Xp(t) from Zl(t),

Z(t),... Zm(t) is obtained by

km

- 7 ) () for 2,...p; (39)

the selecting of X1, 2.., X. from Z _ ... s accom-

plished by

M.
-k forkXri k i

+ m. Zki

i= 1, 2, . . n andj = 2, ... ( p (40)

in particular; a,•d the

apportioning of an estimator j (e. g., A1(0), A(C*) or ýi*) of Oj
amongamj,+1, amrrj +2 , amj is providea by

Y kak - j for

k m. +, m +2, and 1, 2,.... p. 1)

The combination of the two previous transformations to each Zk(t) in
Sj (I. e. , .to multiplication by the product of the original dmjk/I dmjkl
and the corresponding positive scale factor) may now be
compensated for by performing the same combination of transforma-
tions to the corresponding Ak (i. e. , its multiplication by the product
of the original dmjk/I dmjkl and the corresponding positive scale

factor). Indee0d, it might be proved that these transformations may
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be eliminated by replacing vk in Equations (30), (31), (33), (35), (36), (39),
(40) and (41) with the product of the original dmjk/Idmjkl, the corresponding
positive scale factor and vk.

6. DISCUSSION

A procedure has been described for estimation of the coefficients for
linearly independent component signals in a linear model from observations
on the component signals and a composite signal containing the linear model
plus noise which is nonstationary and/or correlated with unknown covariance
matrix, when the coefficients may vary randomly over all possible states of
nature and they may appear in the linear models for more than one data
channel, and when there may be a large number of component signals in the
linear model and some of them may be highly-related. The procedure,
denoted by EIWLS: properly arranges the coefficients and data from all
channels; partitions the resulting set of component signals into subsets of
h'ighly-related ones and selects a representative component signal from each
subset to include in the new linear model; obtains the least squares estima-
tors of the coefficients in the new linear model, and then iteratively calcu-
lates an estimator of the noise covariance matrix and obtains the weighted
!,•ast squares estimators of these coefficients which are determined by the
inverse of the matrix estimator; incorporates the a priori information into
estimators of the coefficients in the new linear model; and apportions an
estimator for the coefficient of the representative component signal for a
subset among the coefficients of component signals in that subset.

During the development of EIWLS, the difficulty of the generalized
statistical regression problem and the requirement for an operational analysis
within a reasonable period of time combined to dictate that the security of
rigorous theoretical proof be occasionally sacrificed for the expedience of
apparent theoretical implication plus intuitive justification. The computer
provided a feasible means to implement the procedure and to empirically
test it on examples, when the noise is nonstationary and uncorrelated.
Empirical temsting of the procedure and its parts has included not only the
analysis of fabricated examples (e. g., those in Section 8 and Ref 1), but
also the successful evaluation of inertial navigation systems via the analysis
of real field-test data. Therefore, EIWLS is presented as a theoretically
promising, intuitively appealing and empirically tested (to a limited extent)
solution for the generalized statistical regression problem.
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The feasibility of IWLS depends upon the practical inversion of
the estzimators INc of the noise cova~iance matrixc 1. Thin inversion
has to be investigated in the case of correiated noise. When the
noise is stationary azi.d cor:,-elated and the observ tions are taken at
different and equaiiy.- k~pace,-i times, the form of~fc i. particularly
simple and inversion m~ay not be too difficult. A, simplifying assump-
tion, which in tenable in a large number of scientific problems, is
that the noise covariaxx,,e- V~ ) becomes zero ans the time difference
It-t' I increases beyond a certain limit. Then £(c) has blocks of zero
elements and inversion by partitioning may be practical.

Conivider the IWLS estimiators 4 1 (c), 4 2 (c), *A, PM~ of the
Coefficients 01, 8ZP ... , 0 O for c =1, 2, .. ,c*. In order to pro-

nartcula appica n, %w p . kAP(c) need not converge to
vide tili~~r If~1  , , 4 2 (c), .f sufcin stbltio

I (c), 2(c*) Op~~lbut only possess a valid measure of

change (e. g, , max Aj c) - hj(c-.1) )/Aj(c) f)which becomes
J;=19,Z ... Pp J3

less than a narticular preaseigned constant for c co, c0+1,, c*.

Suppose that M (AJ-c - 1()) H ~cI < bj for c =c j, cj +1 *.,c*.

ThnA(cj) A(CO 1), Aj(c*)
The 0 . appear to be approaching or oscil-

lating in a band (whose width depends upon bj) al-ouý an asymptotic
value and could probably be combined, by some technique (e. g. ,
extrapolatior), to yield an improved estimator of 19j. This improved
estimation of Ajshould be investigated. A measure of the inherent
accuracy in the estimation of j~,which depends upon the matrix X of
c~-nponent signal observa-tions and the vector Y of composite signal
observations (and, implicitly, the vector ( of noise observations) is
provided by bj and cj. Note that there may be a considerable varia-
tion among the inherent accuracy in the estimation of 0l' fz 02, Op

At each iteration, the guiding principle of IWLS is to provide the
optimum estimators of f~l, 1 *.3fP and then ~,based upon the
available information at that iteration concerning and then 01,

O. p. This principle is similar to Bellman's principle of
optimality in dynamic programnming (Ref 8, page 83), which states
that "an optimnal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must con-
stitute an optimial policy with regard to the state resulting from the
first decieion." In addition, IWLS extracts considerably more infor-
matior. from the data than does least squares and may be termed an
"estimation servomechanism" or an "adaptive estimation procedur-...
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It is not at all unreasonable to conjecture that IWLS will produce,

except perhaps under pathological conditions, near-optimum esti-
mators of i,, 8p .", p and X, However, the stability and

estimation properties of IWLS should be further investigated, both
theoretically and empirically.

It is informative to elaborate upon two previously mentioned
characteristics of the optimum eetimators for 61 ... , I p. The
firit characteristic is that they minimize the appropriate statistical

distance Q )/ between the data vector Y and the estimator of the
matrix alter ego for the linear model XP. One has no knowledge

p
whatdoever of the difference between the linear model 1 .8 Xji at

j--I

time ti avd its resulting estimator ,'- of the difference between 6J and

its estimator, but only knowledge or the probabilistic properties of
these differences. The second characteristic is that for the optimum

estimators of 01, 132, . - ., Op, each of these differences has mean
zero and mii.,mum variance among all corresponding differences
resulting from unbiased linear estimators -f 1, fi, .. , h. In

other words, the optimum estimators of 01, 02, ... , Ap do not
always produce an estimator which is closest to the quantity being
estimated; but they do produce an estimator whose probability dis-
tribution is more tightly spread about this quantity than the proba-
bility distribution of any estimator resulting from unbiased linear

estimators (e.g., the least squares estimators) of r1, 02, *..-, Op.

The three sets of estimators of 31, 2,. ... , 8p that incorporate
t¶e a priori information, one set given by Equation (16) and the other
two sets listed in the fuotnote on page i8, have been empirically
tested on an example for which 01, 12, • 2 , Op had mean zero and

covariance matrix F= diag (yl 2 , Y22,. , )pa of variances )I

Y22 . .. , Yp2- that varied. Although this testin, provided empirical
justification for the use of Zquation (16), the results were somewhat
inconclusive; since the version of the scalar weight presented in that

footnote was too insensitive to the variation in 1, y2 ... , yp and

required an extreme variation in them to itself vary from zero to one.

Additional empirical testing of the three sets of estimators that

incorporate the a priori information, utilizing a more satisfactory
version of ý, is needed. The improved estimators of 01, fZ,-

! •p and te appropriately modified. veruion of V(c*), rather than
l(C*n t(c4a, ...op (C*) and I(c*), should be used to calculate

these estimators.
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Since the coefficientsam. 1+1, am, 1+2 ....- am of the componentsignals in the jth subset Si bec~me analytically and probibilistically indis-

tinguishable from the coeificient Pj of the representative component signal Xj
for S. for j = 1, 2, ... , p during selecting and apportioning, the procedure
used to partition the component signals Zl(t), ZZ(t), . , Zm(t) into subsets

Sal $ , Sp is very important. Hence, the possibility of improving upon
the partitioning procedure employed by EIWLS ought to be investigated. One
approach would be to define a measure of the quality of a partition and to
choose that procedure which maximized this measure.

7. SURVEY OF RELATED LITERATURE

In order to place EIWLS in proper perspective, a survey of related
literature is now presented. This literature is grouped, for convenience,
into seven categories of articles: those treating the properties of the least
squares estimators, a set of weighted least squares estimators or the
optimum estimators (Ref 9-16); those treating estimation of residuals or

iterative estimation procedures (Ref 17-26); those treating estimation pro-

cedures for correlated noise (Ref 27-30); those treating estimation proce-
dures which incorporate a priori information (Ref 31-36); and those treating
procedures for replacing the linear model by a new linear model and

estimating the coeffic,,ents in the new linear model (Ref 4, 21, 34, 35, 37,

38, 39 and 40).

Grenander and Rosenblatt (Ref 9, Sections 7. 1 - 7. 4) derive important

asymptotic properties of the least squares estimators and the optimum

estimators of the coefficients P1, PZ, . .. t Pp when the noise is stationary.
The relationships among the columns of the component signal matrix X and
the eigenvectors of the noise covariance matrix F and the conditions on the
eigenvalues of E, rcquired for the least squares estimators and the optimum
estimators of P1, P2 , ... , p to be equal, are obtained by Muller and Watson
(Ref 10). Using the eigenvalues of certain matrices, Magness and McGuire
(Ref 11) compare the covariance matrices of the least squares estimators
and the optimum estimators of P1, PZ, ... , pp; and Golub (Ref 12) compares
the covariance matrices of a set of weighted least squares estimators and
the optimum estimators of P1, P2 .P..2 Pp.
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Zyskind (Ref 13) and Watson (Ref 14) discuss the estimation problem in
general; and necessary and sufficient -conditions for the least squares and
the optimum estimators of PI, P2, ... , ;p to be equal, or effectively equal,
in particular., The corktribution of errors in estimating weights to the vari-
ances of P1 P2, 2.... v pp, for nonstationary and uncorrelated noise and for a
special case of correlated noise, is treated by Williams (Ref 15). Both
Williams (Ref 15) and McElroy (Ref 16) state necessary and sufficient condi-
tions for the least squares and the optimum estimators of P8, P2' ' Pto be
equal. The above asymptotic properties, relationships, conditions and
comparisons should be useful in the investigation of procedures such as
IW LS.

Material relevant to the estimation of regression residuals, and
thereby E, is preseLted by Thiel (Ref 17 and 18) and Koerts (Ref 19). When
the noise is nonstationary and uncorrelated with variance

[p 1
T- (t) = (t) J a, Prais and Aitchison (Ref 20) propose an

J=l J

iterative estimation procedure that is IWLS with the appropriate estimator

t(c) of the noise covariance matrix E; and Fisher (Ref 21) proposes two
iterative solutions (modified forms of Newton's method of approximation) to
the maximum likelihood equations resulting from normally distributed noise.
Also analogous to IWLS is an iterative estimation procedure described by
Turner, Monroe and Lucas (Ref 22) for the case of the linear model being
replaced by the quotient of two polynomials in the component signal X(t) and
the noise being stationary and uncorrelated. Mandel (Ref 23) develops an
iterative estimation procedure, closely related to IWLS, to treat the linear
model Pl + PZ2 X(t) with nonstationary, uncorrelated noise. -The convergence
properties of _ are treated by Telser (Ref 24).

Iterative estimation procedures which iterate over time, combining
past data and estimators with new data, have appeared for some time in the
engineering literature. Two early examples of such procedures are con-
tained in Ref 25 and 26.

39



An excellent survey of articles concerned with estimation (and hypothe-
sis testing) procedures for correlated noise is presented by Anderson
(Ref 27). In the event of a linear model Pi + P2 X(t) and stationary, corre-
lated noise that is normally distributed with

0.2 (r2P W2 .2 2Pn-7--

.2 0p 0.2 0*2p ... .pn-2

_ O2 P2 o2P cr2 M. 2Pn-3

0. 2pn-lo. Zpn-2 . 2pn-3 o.2

Murthy (Ref 28) discusses an iterative solution to the maximum likelihood
equations and an explicit criterion for its convergence. Goodman (Ref 29)
suggests a noniterative procedure, which performs the estimation in the
frequency domain rather than in the time domain, when the noise is station-
ary and correlated. The estimation problem, with a system of linear models
for several data channels and noise correlated over both channels and time,
is covered by Parks (Ref 30).

From two different points of view, Raiffa and Schlaifer (Ref 31,
Sectionsl3. 2 - 13. 7) and Theil (Ref 32) cover the incorporation of a priori
information into the estimation procedure for stationary, uncorrelated noise
which is normally distributed with variance a-2 either known or unknown.
Gunckel (Ref 33) incorporftes a priori information into estimators that
reduce to the estimators Op, • ,*, * of P1 P .... , p in Equation(16)
when the noise has (mean zero and) covariance matrix Ec. The incorpora-
tion of a priori information described b Drucker (Ref 34) is in essentially

A . A A
the same form asp* = (01*, P2*, .''. . *)'. Chipman (Ref 35) resents
material concerning the properties of _* (plus perhaps 00 and AA), as well
as to partitioning, selecting and apporFioning. Judge and Takayama (Ref 36)
treat inequality restrictions, for incorporating a priori information into the
estimation procedure.
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Efroymson (Ref 4) proposes a stepwise selection of representative
c(Imponent signals via selection of: the best component signal Zk(t) to use as
the representative component signal XI(t) in the linear model P1 X 1 (t); the
best Zk(t) to use with X (t) as the representative component signal X2 (t) in
the linear model PiXI(ti + P 2 X(t); ... ; and the best Zk(t) to use with
Xl(t), X 2 (t), .... Xp_l(t) as the representative component signal Xp(t) in

p
the linear model P X.X.(t). A selection of representative component signals

j=l J

via an iterative nomination, of the best subset of p-p' Zk(t)'s to use with a
subset Xl(t), X 2 (t), ... X i(t) of p' Zk(t's as the representative component

PPsignals X p + I (t), X P + 2 (t), X *, (t) in the linear
pp

model p• X(t) and then of the best subset of p'Zk(t)'s to use with

that subset Xp1+l(t), Xp,+2(t)0 ... , X (t)of p-p' Zk(t)'s as the representative
component signals X 1 (t),0X 2 (t) ... )p,(t) in the linear

p
model 2: P.Xj(t) until two subsets renominate each other, is suggested

by Villone, McCornack and Wood (Ref 3 71. Both of these procedures simul-
taneously provide least squares estimators ,f P1 , PZ, .... ,pp. However,
the two procedures which are most similar to partitioning, selecting and
apportioning are the procedure for approximating by representative compo-
nent signals of Fisher (Ref 21) and the procedure. for grouping, selecting and
apportioning of Drucker (Ref 34). Massy (Ref 38), Fortier and Solomon
(Ref 39) and King (Ref 40) also are related to pirtioning, selecting and
apportioning.

With the exception of Ref 4 and 37, tl.his related literature became
known to the author only after the development of EIWLS. One may, never-
theless, note the anticipation of: the iterative estimation procedures of Ref 1
(IWLS) and the subsequent Ref 23, by Ref 20-22 and 28; the incorporation of a
priori information into the estimation procedures of Ref 1 (EIWLS in sum-
marized form) and the subsequent Ref 34, by Ref 31-33; and the procedure
for partitioning, selecting and apportioning of Ref 1 (EIWLS in summarized
form) and the subsequent Ref 34, by Ref 21.
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8. ILLUSTRATIVE EXAMPLE*

An illustrative example concludes the paper. Although the example is
described in detail by the paper's original version (see the footnote on page i),
only its input and output are summarized now for simplicity. For the
example:

1. The 272 observations on each of the three channel linear models,
MI (t), M2 (t) and M3 (t), are constructed from simultaneous
observations on 14 known channel component signals using known
channel coefficients.

2. The 272 observatiors on each of the three independent channel
noises, (I (t), E2 (t) and ( 3 (t), are generated to be uncorrelated
with mean zero and known variance 0-2 (t).

3. The 272 observations on each of the three channel composite
signals, Y1 (t), Y2 (t) and Y3 (t), are constructed by adding the
appropriate channel linear model and noise observations.

4. The coefficients and data from all three channels are properly
arranged, component signals are partitioned into seven subsets,
and seven representative component signals are selected.

5. The coefficients, P. in the new linear model are estimated via
least squares(p (0)J), seven iterations of IWLS (ýj (7) ), incorpora-
tion of a -.riori information . and the optimum weighted least
squares (Poj) for j = 1, 2, .... 7.

ý (0 (t, ý(7) A 4C€

6. The corresponding estimators, kt) k~ (t), Yk (t) and
10k (t), of Yk (t) and Mk (t) are computed for k 1, 2, 3.

Graphs of the three channel linear models and composite signals are
presented in Figures 1, 2 and 3. Tables 1 and 2 show the actual coefficients
in the channel and new linear models and their EIWLS estimators, and a
summary of information regarding estimators of coefficients in the new
linear model, respectively. The latter indicates that: (1) the seventh IWLS
estimators are, mainly, both near-optimum and superior to the least scuares
estimators; (2) the majority of change in the IWLS estimators has occureed
by the third iteration; and (3) the relative change between the sixth

*To implement EIWLS for the example, Mr. P. L. Hsu developed an
experimental computer program of exceptional quality.
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